Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
J Biol Chem ; 300(5): 107267, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38583863

Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119699, 2024 Apr.
Article En | MEDLINE | ID: mdl-38387507

As the genetic landscape of cardiomyopathies continues to expand, the identification of missense variants in disease-associated genes frequently leads to a classification of variant of uncertain significance (VUS). For the proper reclassification of such variants, functional characterization is an important contributor to the proper assessment of pathogenic potential. Several missense variants in the calcium transport regulatory protein phospholamban have been associated with dilated cardiomyopathy. However, >40 missense variants in this transmembrane peptide are currently known and most remain classified as VUS with little clinical information. Similarly, missense variants in cardiac myosin binding protein have been associated with hypertrophic cardiomyopathy. However, hundreds of variants are known and many have low penetrance and are often found in control populations. Herein, we focused on novel missense variants in phospholamban, an Ala15-Thr variant found in a 4-year-old female and a Pro21-Thr variant found in a 60-year-old female, both with a family history and clinical diagnosis of dilated cardiomyopathy. The patients also harbored a Val896-Met variant in cardiac myosin binding protein. The phospholamban variants caused defects in the function, phosphorylation, and dephosphorylation of this calcium transport regulatory peptide, and we classified these variants as potentially pathogenic. The variant in cardiac myosin binding protein alters the structure of the protein. While this variant has been classified as benign, it has the potential to be a low-risk susceptibility variant because of the structural change in cardiac myosin binding protein. Our studies provide new biochemical evidence for missense variants previously classified as benign or VUS.


Calcium-Binding Proteins , Cardiomyopathy, Dilated , Child, Preschool , Female , Humans , Middle Aged , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Peptides/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism
3.
PNAS Nexus ; 3(1): pgad453, 2024 Jan.
Article En | MEDLINE | ID: mdl-38222469

The discovery of allosteric modulators is an emerging paradigm in drug discovery, and signal transduction is a subtle and dynamic process that is challenging to characterize. We developed a time-correlated single photon-counting imaging approach to investigate the structural mechanisms for small-molecule activation of the cardiac sarcoplasmic reticulum Ca2+-ATPase, a pharmacologically important pump that transports Ca2+ at the expense of adenosine triphosphate (ATP) hydrolysis. We first tested whether the dissociation of sarcoplasmic reticulum Ca2+-ATPase from its regulatory protein phospholamban is required for small-molecule activation. We found that CDN1163, a validated sarcoplasmic reticulum Ca2+-ATPase activator, does not have significant effects on the stability of the sarcoplasmic reticulum Ca2+-ATPase-phospholamban complex. Time-correlated single photon-counting imaging experiments using the nonhydrolyzable ATP analog ß,γ-Methyleneadenosine 5'-triphosphate (AMP-PCP) showed ATP is an allosteric modulator of sarcoplasmic reticulum Ca2+-ATPase, increasing the fraction of catalytically competent structures at physiologically relevant Ca2+ concentrations. Unlike ATP, CDN1163 alone has no significant effects on the Ca2+-dependent shifts in the structural populations of sarcoplasmic reticulum Ca2+-ATPase, and it does not increase the pump's affinity for Ca2+ ions. However, we found that CDN1163 enhances the ATP-mediated modulatory effects to increase the population of catalytically competent sarcoplasmic reticulum Ca2+-ATPase structures. Importantly, this structural shift occurs within the physiological window of Ca2+ concentrations at which sarcoplasmic reticulum Ca2+-ATPase operates. We demonstrated that ATP is both a substrate and modulator of sarcoplasmic reticulum Ca2+-ATPase and showed that CDN1163 and ATP act synergistically to populate sarcoplasmic reticulum Ca2+-ATPase structures that are primed for phosphorylation. This study provides novel insights into the structural mechanisms for sarcoplasmic reticulum Ca2+-ATPase activation by its substrate and a synthetic allosteric modulator.

4.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119613, 2024 01.
Article En | MEDLINE | ID: mdl-37918638

Myoregulin (MLN) is a protein that regulates the activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) without affecting its affinity for Ca2+. MLN's residue Lys27 is located at a site where other SERCA regulators control Ca2+ affinity. Therefore, we conducted atomistic simulations and ATPase activity experiments to determine whether replacing Lys27 with asparagine, a conserved residue found in various muscle SERCA regulators, would enable MLN to modulate both the Ca2+ affinity and catalytic activity of SERCA. Our findings indicate that replacing Lys27 with Asn significantly enhances the inhibitory potency of MLN, but it does not affect SERCA's affinity for Ca2+. We suggest that the SERCA site modulating Ca2+ affinity also acts as a catalytic activity switch. Therefore, this site is a key element contributing to the functional divergence among homologous SERCA regulators. This study paves the way for future investigations to explore how biological function diverges during the evolution of the SERCA regulator family.


Asparagine , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Asparagine/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum/metabolism
5.
Biochemistry ; 62(8): 1331-1336, 2023 04 18.
Article En | MEDLINE | ID: mdl-37014032

Myoregulin (MLN) is a member of the regulin family, a group of homologous membrane proteins that bind to and regulate the activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA). MLN, which is expressed in skeletal muscle, contains an acidic residue in its transmembrane domain. The location of this residue, Asp35, is unusual because the relative occurrence of aspartate is very rare (<0.2%) within the transmembrane helix regions. Therefore, we used atomistic simulations and ATPase activity assays of protein co-reconstitutions to probe the functional role of MLN residue Asp35. These structural and functional studies showed Asp35 has no effects on SERCA's affinity for Ca2+ or the structural integrity of MLN in the lipid bilayer. Instead, Asp35 controls SERCA inhibition by populating a bound-like orientation of MLN. We propose Asp35 provides a functional advantage over other members of the regulin family by populating preexisting MLN conformations required for MLN-specific regulation of SERCA. Overall, this study provides new clues about the evolution and functional divergence of the regulin family and offers novel insights into the functional role of acidic residues in transmembrane protein domains.


Calcium , Muscle, Skeletal , Calcium/metabolism , Calcium-Binding Proteins/chemistry , Ion Transport , Molecular Conformation , Muscle, Skeletal/metabolism , Sarcoplasmic Reticulum/chemistry , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Humans
6.
J Biol Chem ; 299(5): 104681, 2023 05.
Article En | MEDLINE | ID: mdl-37030504

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.


Hydroxymethylglutaryl-CoA Reductase Inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Myocardium/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Machine Learning
7.
Biochemistry ; 61(14): 1419-1430, 2022 07 19.
Article En | MEDLINE | ID: mdl-35771007

Intracellular calcium signaling is essential for all kingdoms of life. An important part of this process is the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), which maintains the low cytosolic calcium levels required for intracellular calcium homeostasis. In higher organisms, SERCA is regulated by a series of tissue-specific transmembrane subunits such as phospholamban in cardiac muscles and sarcolipin in skeletal muscles. These regulatory axes are so important for muscle contractility that SERCA, phospholamban, and sarcolipin are practically invariant across mammalian species. With the recent discovery of the arthropod sarcolambans, the family of calcium pump regulatory subunits appears to span more than 550 million years of evolutionary divergence from arthropods to humans. This evolutionary divergence is reflected in the peptide sequences, which vary enormously from one another and only vaguely resemble phospholamban and sarcolipin. The discovery of the sarcolambans allowed us to address two questions. How much sequence variation is tolerated in the regulation of mammalian SERCA activity by the transmembrane peptides? Do divergent peptide sequences mimic phospholamban or sarcolipin in their regulatory activities despite limited sequence similarity? We expressed and purified recombinant sarcolamban peptides from three different arthropods. The peptides were coreconstituted into proteoliposomes with mammalian SERCA1a and the effect of each peptide on the apparent calcium affinity and maximal activity of SERCA was measured. All three peptides were superinhibitors of SERCA, exhibiting either phospholamban-like or sarcolipin-like characteristics. Molecular modeling, protein-protein docking, and molecular dynamics simulations revealed novel features of the divergent peptides and their SERCA regulatory properties.


Calcium , Sarcoplasmic Reticulum , Animals , Calcium/metabolism , Calcium Signaling , Calcium-Binding Proteins/chemistry , Humans , Mammals/metabolism , Molecular Dynamics Simulation , Muscle Proteins , Peptides/metabolism , Peptides/pharmacology , Proteolipids/chemistry , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry
8.
J Biol Chem ; 298(5): 101865, 2022 05.
Article En | MEDLINE | ID: mdl-35339486

The sodium-potassium ATPase (Na/K-ATPase, NKA) establishes ion gradients that facilitate many physiological functions including action potentials and secondary transport processes. NKA comprises a catalytic subunit (alpha) that interacts closely with an essential subunit (beta) and regulatory transmembrane micropeptides called FXYD proteins. In the heart, a key modulatory partner is the FXYD protein phospholemman (PLM, FXYD1), but the stoichiometry of the alpha-beta-PLM regulatory complex is unknown. Here, we used fluorescence lifetime imaging and spectroscopy to investigate the structure, stoichiometry, and affinity of the NKA-regulatory complex. We observed a concentration-dependent binding of the subunits of NKA-PLM regulatory complex, with avid association of the alpha subunit with the essential beta subunit as well as lower affinity alpha-alpha and alpha-PLM interactions. These data provide the first evidence that, in intact live cells, the regulatory complex is composed of two alpha subunits associated with two beta subunits, decorated with two PLM regulatory subunits. Docking and molecular dynamics (MD) simulations generated a structural model of the complex that is consistent with our experimental observations. We propose that alpha-alpha subunit interactions support conformational coupling of the catalytic subunits, which may enhance NKA turnover rate. These observations provide insight into the pathophysiology of heart failure, wherein low NKA expression may be insufficient to support formation of the complete regulatory complex with the stoichiometry (alpha-beta-PLM)2.


Microscopy , Sodium-Potassium-Exchanging ATPase , Cell Membrane/metabolism , Phosphoproteins/metabolism , Phosphorylation , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
9.
Sci Rep ; 11(1): 16580, 2021 08 16.
Article En | MEDLINE | ID: mdl-34400719

Membrane proteins constitute a substantial fraction of the human proteome, thus representing a vast source of therapeutic drug targets. Indeed, newly devised technologies now allow targeting "undruggable" regions of membrane proteins to modulate protein function in the cell. Despite the advances in technology, the rapid translation of basic science discoveries into potential drug candidates targeting transmembrane protein domains remains challenging. We address this issue by harmonizing single molecule-based and ensemble-based atomistic simulations of ligand-membrane interactions with patient-derived induced pluripotent stem cell (iPSC)-based experiments to gain insights into drug delivery, cellular efficacy, and safety of molecules directed at membrane proteins. In this study, we interrogated the pharmacological activation of the cardiac Ca2+ pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA2a) in human iPSC-derived cardiac cells as a proof-of-concept model. The combined computational-experimental approach serves as a platform to explain the differences in the cell-based activity of candidates with similar functional profiles, thus streamlining the identification of drug-like candidates that directly target SERCA2a activation in human cardiac cells. Systematic cell-based studies further showed that a direct SERCA2a activator does not induce cardiotoxic pro-arrhythmogenic events in human cardiac cells, demonstrating that pharmacological stimulation of SERCA2a activity is a safe therapeutic approach targeting the heart. Overall, this novel multiscale platform encompasses organ-specific drug potency, efficacy, and safety, and opens new avenues to accelerate the bench-to-patient research aimed at designing effective therapies directed at membrane protein domains.


Membrane Proteins/drug effects , Molecular Targeted Therapy/methods , Sarcoplasmic Reticulum Calcium-Transporting ATPases/drug effects , Small Molecule Libraries/therapeutic use , Animals , Enzyme Activation/drug effects , Giant Cells/enzymology , Humans , Induced Pluripotent Stem Cells/enzymology , Microsomes/enzymology , Molecular Dynamics Simulation , Molecular Structure , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Phosphatidylcholines , Protein Domains/drug effects , Sarcoplasmic Reticulum/enzymology , Small Molecule Libraries/adverse effects , Small Molecule Libraries/pharmacology , Swine , Water
10.
Elife ; 102021 06 02.
Article En | MEDLINE | ID: mdl-34075877

The sarco-plasmic reticulum calcium pump (SERCA) plays a critical role in the contraction-relaxation cycle of muscle. In cardiac muscle, SERCA is regulated by the inhibitor phospholamban. A new regulator, dwarf open reading frame (DWORF), has been reported to displace phospholamban from SERCA. Here, we show that DWORF is a direct activator of SERCA, increasing its turnover rate in the absence of phospholamban. Measurement of in-cell calcium dynamics supports this observation and demonstrates that DWORF increases SERCA-dependent calcium reuptake. These functional observations reveal opposing effects of DWORF activation and phospholamban inhibition of SERCA. To gain mechanistic insight into SERCA activation, fluorescence resonance energy transfer experiments revealed that DWORF has a higher affinity for SERCA in the presence of calcium. Molecular modeling and molecular dynamics simulations provide a model for DWORF activation of SERCA, where DWORF modulates the membrane bilayer and stabilizes the conformations of SERCA that predominate during elevated cytosolic calcium.


Calcium Signaling , Calcium/metabolism , Peptides/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum/enzymology , Calcium-Binding Proteins/metabolism , Enzyme Activation , HEK293 Cells , Humans , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/genetics , Protein Conformation , Sarcoplasmic Reticulum/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Structure-Activity Relationship , Time Factors
11.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article En | MEDLINE | ID: mdl-33805255

The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.


Calcium/metabolism , Molecular Dynamics Simulation , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Humans , Ion Transport , Protein Conformation
12.
Article En | MEDLINE | ID: mdl-35475037

The search for novel therapeutic compounds remains an overwhelming task owing to the time-consuming and expensive nature of the drug development process and low success rates. Traditional methodologies that rely on the one drug-one target paradigm have proven insufficient for the treatment of multifactorial diseases, leading to a shift to multitarget approaches. In this emerging paradigm, molecules with off-target and promiscuous interactions may result in preferred therapies. In this study, we developed a general pipeline combining machine learning algorithms and a deep generator network to train a dual inhibitor classifier capable of identifying putative pharmacophoric traits. As a case study, we focused on dual inhibitors targeting DNA methyltransferase 1 (DNMT) and histone deacetylase 2 (HDAC2), two enzymes that play a central role in epigenetic regulation. We used this approach to identify dual inhibitors from a novel large natural product database in the public domain. We used docking and atomistic simulations as complementary approaches to establish the ligand-interaction profiles between the best hits and DNMT1/HDAC2. By using the combined ligand- and structure-based approaches, we discovered two promising novel scaffolds that can be used to simultaneously target both DNMT1 and HDAC2. We conclude that the flexibility and adaptability of the proposed pipeline has predictive capabilities of similar or derivative methods and is readily applicable to the discovery of small molecules targeting many other therapeutically relevant proteins.

13.
Int J Mol Sci ; 21(19)2020 Oct 01.
Article En | MEDLINE | ID: mdl-33019581

Sarcoplasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLB) are essential components of the cardiac Ca2+ transport machinery. PLB phosphorylation at residue Ser16 (pSer16) enhances SERCA activity in the heart via an unknown structural mechanism. Here, we report a fully atomistic model of SERCA bound to phosphorylated PLB and study its structural dynamics on the microsecond time scale using all-atom molecular dynamics simulations in an explicit lipid bilayer and water environment. The unstructured N-terminal phosphorylation domain of PLB samples different orientations and covers a broad area of the cytosolic domain of SERCA but forms a stable complex mediated by pSer16 interactions with a binding site formed by SERCA residues Arg324/Lys328. PLB phosphorylation does not affect the interaction between the transmembrane regions of the two proteins; however, pSer16 stabilizes a disordered structure of the N-terminal phosphorylation domain that releases key inhibitory contacts between SERCA and PLB. We found that PLB phosphorylation is sufficient to guide the structural transitions of the cytosolic headpiece that are required to produce a competent structure of SERCA. We conclude that PLB phosphorylation serves as an allosteric molecular switch that releases inhibitory contacts and strings together the catalytic elements required for SERCA activation. This atomistic model represents a vivid atomic-resolution visualization of SERCA bound to phosphorylated PLB and provides previously inaccessible insights into the structural mechanism by which PLB phosphorylation releases SERCA inhibition in the heart.


Calcium-Binding Proteins/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Allosteric Regulation , Binding Sites , Calcium-Binding Proteins/metabolism , Humans , Lipid Bilayers/metabolism , Nuclear Magnetic Resonance, Biomolecular , Phosphatidylcholines/metabolism , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Serine/chemistry , Serine/metabolism , Thermodynamics
14.
Biophys J ; 119(9): 1917-1926, 2020 11 03.
Article En | MEDLINE | ID: mdl-33069270

Sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and phospholamban (PLB) are essential for intracellular Ca2+ transport in myocytes. Ca2+-dependent activation of SERCA-PLB provides a control function that regulates cytosolic and SR Ca2+ levels. Although experimental and computational studies alone have led to a greater insight into SERCA-PLB regulation, the structural mechanisms for Ca2+ binding reversing inhibition of the complex remain poorly understood. Therefore, we have performed atomistic simulations totaling 32.7 µs and cell-based intramolecular fluorescence resonance energy transfer (FRET) experiments to determine structural changes of PLB-bound SERCA in response to binding of a single Ca2+ ion. Complementary MD simulations and FRET experiments showed that open-to-closed transitions in the structure of the headpiece underlie PLB inhibition of SERCA, and binding of a single Ca2+ ion is sufficient to shift the protein population toward a structurally closed structure of the complex. Closure is accompanied by functional interactions between the N-domain ß5-ß6 loop and the A-domain and the displacement of the catalytic phosphorylation domain toward a competent structure. We propose that reversal of SERCA-PLB inhibition is achieved by stringing together its controlling modules (A-domain and loop Nß5-ß6) with catalytic elements (P-domain) to regulate function during intracellular Ca2+ signaling. We conclude that binding of a single Ca2+ is a critical mediator of allosteric signaling that dictates structural changes and motions that relieve SERCA inhibition by PLB. Understanding allosteric regulation is of paramount importance to guide therapeutic modulation of SERCA and other evolutionarily related ion-motive ATPases.


Calcium-Binding Proteins , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Phosphorylation , Protein Binding , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
15.
Biophys J ; 119(5): 1033-1040, 2020 09 01.
Article En | MEDLINE | ID: mdl-32814059

The sarcoplasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions from the cytoplasm to the reticulum lumen at the expense of ATP hydrolysis. In addition to transporting Ca2+, SERCA facilitates bidirectional proton transport across the sarcoplasmic reticulum to maintain the charge balance of the transport sites and to balance the charge deficit generated by the exchange of Ca2+. Previous studies have shown the existence of a transient water-filled pore in SERCA that connects the Ca2+ binding sites with the lumen, but the capacity of this pathway to sustain passive proton transport has remained unknown. In this study, we used the multiscale reactive molecular dynamics method and free energy sampling to quantify the free energy profile and timescale of the proton transport across this pathway while also explicitly accounting for the dynamically coupled hydration changes of the pore. We find that proton transport from the central binding site to the lumen has a microsecond timescale, revealing a novel passive cytoplasm-to-lumen proton flow beside the well-known inverse proton countertransport occurring in active Ca2+ transport. We propose that this proton transport mechanism is operational and serves as a functional conduit for passive proton transport across the sarcoplasmic reticulum.


Calcium , Protons , Calcium/metabolism , Ion Transport , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
16.
J Chem Inf Model ; 60(8): 3985-3991, 2020 08 24.
Article En | MEDLINE | ID: mdl-32668157

Sarcolipin (SLN) mediates Ca2+ transport and metabolism in muscle by regulating the activity of the Ca2+ pump SERCA. SLN has a conserved luminal C-terminal domain that contributes to its functional divergence among homologous SERCA regulators, but the precise mechanistic role of this domain remains poorly understood. We used all-atom molecular dynamics (MD) simulations of SLN totaling 77.5 µs to show that the N- (NT) and C-terminal (CT) domains function in concert. Analysis of the MD simulations showed that serial deletions of the SLN C-terminus do not affect the stability of the peptide nor induce dissociation of SLN from the membrane but promote a gradual decrease in both the tilt angle of the transmembrane helix and the local thickness of the lipid bilayer. Mutual information analysis showed that the NT and CT domains communicate with each other in SLN and that interdomain communication is partially or completely abolished upon deletion of the conserved segment Tyr29-Tyr31 as well as by serial deletions beyond this domain. Phosphorylation of SLN at residue Thr5 also induces changes in the communication between the CT and NT domains, which thus provides additional evidence for interdomain communication within SLN. We found that interdomain communication is independent of the force field used and lipid composition, which thus demonstrates that communication between the NT and CT domains is an intrinsic functional feature of SLN. We propose the novel hypothesis that the conserved C-terminus is an essential element required for dynamic control of SLN regulatory function.


Proteolipids , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Communication , Humans , Muscle Proteins/genetics , Muscle Proteins/metabolism , Proteolipids/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
17.
Int J Mol Sci ; 21(11)2020 Jun 10.
Article En | MEDLINE | ID: mdl-32532023

Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.


Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Phosphorylation , Protein Conformation , Protein Domains , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Thapsigargin/chemistry , Thapsigargin/metabolism
18.
Biophys J ; 118(2): 518-531, 2020 01 21.
Article En | MEDLINE | ID: mdl-31858977

The sequential rise and fall of cytosolic calcium underlies the contraction-relaxation cycle of muscle cells. Whereas contraction is initiated by the release of calcium from the sarcoplasmic reticulum, muscle relaxation involves the active transport of calcium back into the sarcoplasmic reticulum. This reuptake of calcium is catalyzed by the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), which plays a lead role in muscle contractility. The activity of SERCA is regulated by small membrane protein subunits, the most well-known being phospholamban (PLN) and sarcolipin (SLN). SLN physically interacts with SERCA and differentially regulates contractility in skeletal and atrial muscle. SLN has also been implicated in skeletal muscle thermogenesis. Despite these important roles, the structural mechanisms by which SLN modulates SERCA-dependent contractility and thermogenesis remain unclear. Here, we functionally characterized wild-type SLN and a pair of mutants, Asn4-Ala and Thr5-Ala, which yielded gain-of-function behavior comparable to what has been found for PLN. Next, we analyzed two-dimensional crystals of SERCA in the presence of wild-type SLN by electron cryomicroscopy. The fundamental units of the crystals are antiparallel dimer ribbons of SERCA, known for decades as an assembly of calcium-free SERCA molecules induced by the addition of decavanadate. A projection map of the SERCA-SLN complex was determined to a resolution of 8.5 Å, which allowed the direct visualization of an SLN pentamer. The SLN pentamer was found to interact with transmembrane segment M3 of SERCA, although the interaction appeared to be indirect and mediated by an additional density consistent with an SLN monomer. This SERCA-SLN complex correlated with the ability of SLN to decrease the maximal activity of SERCA, which is distinct from the ability of PLN to increase the maximal activity of SLN. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and an SLN monomer.


Muscle Proteins/chemistry , Muscle Proteins/metabolism , Protein Multimerization , Proteolipids/chemistry , Proteolipids/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Amino Acid Sequence , Humans , Models, Molecular , Protein Binding , Protein Structure, Quaternary
19.
Sci Rep ; 9(1): 3349, 2019 03 04.
Article En | MEDLINE | ID: mdl-30833659

The calcium pump SERCA is a transmembrane protein that is critical for calcium transport in cells. SERCA resides in an environment made up largely by the lipid bilayer, so lipids play a central role on its stability and function. Studies have provided insights into the effects of annular and bulk lipids on SERCA activation, but the role of a nonannular lipid site in the E2 intermediate state remains elusive. Here, we have performed microsecond molecular dynamics simulations to probe the effects of nonannular lipid binding on the stability and structural dynamics of the E2 state of SERCA. We found that the structural integrity and stability of the E2 state is independent of nonannular lipid binding, and that occupancy of a lipid molecule at this site does not modulate destabilization of the E2 state, a step required to initiate the transition toward the competent E1 state. We also found that binding of the nonannular lipid does not induce direct allosteric control of the intrinsic functional dynamics the E2 state. We conclude that nonannular lipid binding is not necessary for the stability of the E2 state, but we speculate that it becomes functionally significant during the E2-to-E1 transition of the pump.


Lipids/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Binding Sites , Molecular Probes , Molecular Structure
20.
Biophys J ; 116(4): 633-647, 2019 02 19.
Article En | MEDLINE | ID: mdl-30712785

The interaction of phospholamban (PLN) with the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump is a major regulatory axis in cardiac muscle contractility. The prevailing model involves reversible inhibition of SERCA by monomeric PLN and storage of PLN as an inactive pentamer. However, this paradigm has been challenged by studies demonstrating that PLN remains associated with SERCA and that the PLN pentamer is required for the regulation of cardiac contractility. We have previously used two-dimensional (2D) crystallization and electron microscopy to study the interaction between SERCA and PLN. To further understand this interaction, we compared small helical crystals and large 2D crystals of SERCA in the absence and presence of PLN. In both crystal forms, SERCA molecules are organized into identical antiparallel dimer ribbons. The dimer ribbons pack together with distinct crystal contacts in the helical versus large 2D crystals, which allow PLN differential access to potential sites of interaction with SERCA. Nonetheless, we show that a PLN oligomer interacts with SERCA in a similar manner in both crystal forms. In the 2D crystals, a PLN pentamer interacts with transmembrane segments M3 of SERCA and participates in a crystal contact that bridges neighboring SERCA dimer ribbons. In the helical crystals, an oligomeric form of PLN also interacts with M3 of SERCA, though the PLN oligomer straddles a SERCA-SERCA crystal contact. We conclude that the pentameric form of PLN interacts with M3 of SERCA and that it plays a distinct structural and functional role in SERCA regulation. The interaction of the pentamer places the cytoplasmic domains of PLN at the membrane surface proximal to the calcium entry funnel of SERCA. This interaction may cause localized perturbation of the membrane bilayer as a mechanism for increasing the turnover rate of SERCA.


Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Protein Multimerization , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Structure, Quaternary , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry
...